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The mixing of passive helium and temperature 
fluctuations in grid turbulence 

By A. SIRIVAT A N D  Z. WARHAFT 
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 

Ithaca, New Yorlr 14853, U.S.A. 

(Received 28 July 1981 and in revised form 8 December 1981) 

By producing thermal fluctuations with a mandohe and helium fluctuations with 
chimneys attached to the grid bars, the mixing of temperature and helium fluctuations 
as well as the decay of temperature and helium variance and their flux is investigated 
in decaying grid-generated turbulence. The helium, temperature and velocity fluctua- 
tions were measured with a modified ' Way-Libby ' interference probe (Way & Libby 
1970, 1971). It is shown that, as for temperature variance, the helium-variance decay 
rate is a function the ratio of the helium length scale to the velocity length scale. It is 
also shown that the decay of the cross-correlation between temperature and helium 
fluctuations is slow if both scalars are introduced close to the grid, but rapid if each 
scalar is introduced a t  a different distance from the grid, and hence at different scales. 
The results corroborate those of the inference method of Warhaft (1981), which is 
extended here to examine other cases. A particularly unexpected finding is that  under 
certain circumstances the two-scalar cross-correlation may actually increase with 
distance from the grid, although the scalar covariance decreases. The return to isotropy 
of helium flux and temperature flux is also investigated and is shown to be slow if the 
scalar flux is produced near the grid bars, but faster if the flux is produced further 
downstream. For all the measurements helium and temperature were passive additives. 
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1. Introduction 
We address here, from an experimental viewpoint, the mixing of temperature and 

helium fluctuations, 8 and c respectively, in grid-generated turbulence. Our objective 
is to  examine the rate of decay of such quantities as the temperature and helium 
variance @ and 2, the longitudinal heat and concentration flux u7 and UC, and the 
scalar covariance &, as well as their associated cross-correlation coefficients pus, puc 
and pee. We will pay particular attention to the way the scalars are introduced into 
the flow. Here, for simplicity, the fluxes have been written in kinematic units, since 
the density and specific heat are constant for the flows (in which temperature and 
helium are passive additives) to be examined. 

The reason for our study is two-fold. First, there is a practical need for information 
on scalar mixing in turbulent flows; data on scalar-mixing rates is needed for the 
prediction of chemical reaction and combustion rates as well as for an understanding 
of heat and mass transfer in the atmosphere and the oceans. Clearly, these engineering 
and natural flows are very complex, involving anisotropy, buoyancy and other pro- 
duction mechanisms, while the mixing of passive scalars in grid turbulence occurs in 
an approximately isotropic flow and without production. However, we heliere it is 
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necessary to  gain an understanding of mixing in simple flows before we attempt the 
more complex ones. 

Secondly, there is a t  present a very rapid development of various modelling and 
computational techniques in turbulent flows. For example, for the problem of model- 
ling scalar-variance decay in grid turbulence a t  least six different techniques have 
been used in recent years. These include second-order modelling (Newman, Launder 
& Lumley 1981)) modelling based on Richardson dispersion arguments (Nelkin & Kerr 
1981)) a Lagrangian dispersion model (Durbin 1981)) direct spectral simulation (Kerr 
1981)) large-eddy simulation (Antonopoulos-Domis 1981), and the direct-interaction 
approximation (Newman & Herring 1979). A particularly encouraging aspect of the 
three last listed techniques is that they are now able to deal computationally with the 
moderately large Reynolds and PBclet numbers produced in laboratory flows.? How- 
ever, the way the scalar variance or covariance is introduced into the flow plays a 
vital role in its subsequent evolution, and this information can be properly supplied 
only by the experimentalist. For example, heating a grid produces a heat flux which 
decays very slowly with time, while introducing the thermal fluctuations far down- 
stream from the grid, in the region where the velocity field has become approximately 
isotropic, produces a rapidly decaying heat flux (Warhaft & Lumley 1978b). The 
modeller and theoretician must be supplied with the proper initial conditions, or 
otherwise his modelling attempts may be in vain. 

We have examined in our previous studies a number of aspects of scalar mixing. 
Warhaft & Lumley ( 1 9 7 8 ~ )  b )  have examined the decay of @' and u7 and Warhaft 
(1981) has used an inference method to determine scalar covariance decay. I n  all these 
studies only a single scalar, temperature, has been used. Here, we introduce a second 
scalar, helium, and as for temperature we pay particular attention to the way it is fed 
into the flow. One of our aims is to  determine whether helium variance and its flux 
behaves in a similar manner to temperature, inspite of the necessarily different way of 
introducing the helium fluctuations. Another aim is to determine whether the two- 
scalar covariance z, its decay rate being a vital parameter in determining reaction 
rates, behaves in the same manner as the two-scalar covariance decay deduced using 
a single scalar which has been recently described by Warhaft (1981). 

Apart from the inference method of Warhaft (1981) there appear to  have been no 
previous experiments concerning the mixing of two scalars in grid turbulence; indeed 
there does not seem to be any quantitative experimental data on two-scalar mixing 
in any type of turbulent flow. We note that Gibson & Xchwarz (1963) examined the 
decay rates of the variance of two different scalars, salinity and temperature in water, 
but they did not study the evolution and decay of the scalar covariance and flux, nor 
did they vary the input conditions of the scalars. 

2. The apparatus 
2.1. The wind tunnel and grid 

The vertically oriented open-circuit wind tunnel was the same as that used in our 
previous studies (Warhaft 1981). However, in order to conserve helium gas, the test- 

? Second-order modelling (in tho form used by Ncwman et al. 1981) and the Richardson 
dispersion model are limited to very large Reynolds numbers only, and are Reynolds-number 
independent in this range. Durbin's schcme covers a wide Pi?cli?t-number range, and. he specifi- 
cally investigates the dcpendence of scalar variance decay on Pe. 
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v (m2/s) 1.65 x 10-5 
u (m/d 4.7 

(m) 0.0125 
R M E  UM/V 3560 

1.33 
0.0845 
9.27 x 10-3 
6.93 x 10-3 

0.129 
- 
wi = v + d  (m2/s2) 
k, = ( + 3 ) t  (m-1) 

1.46 x 10-3 
2.31 x 103 

Peak of 3-dimensional spectrum (m-1) 167 

TABLE 1. Velocity flow parameters. The fluctuation parameters are calculated for x / M  = 54. 

section area was reduced from the original 40 x 40 cm2 to 20 x 20 cm2 by means of a 
4 : 1 secondary contraction. The turbulence-generating grid (placed, of course, after 
the secondary contraction) was a biplane arrangement of 0.23 cm hollow square- 
sectioned brass rods with a mesh length M of 1-25 cm. Thus the solidity of the grid 
was 0-34, the same as that for our previous measurements in the larger wind tunnel. 
Most measurements were carried out a t  a mean test-section speed U of 4.7 m/s, giving 
a grid Reynolds number (RAf = U M / v )  of 3560. Although this is a relatively low R M ,  

previous studies (Comte-Bellot & Corrsin 1966) have shown that the velocity variance 
decay rate a t  these Reynolds numbers is similar to that a t  higher R M .  Our results 
corroborate this; both the velocity and thermal variance decay and their spectra are 
similar to  our previous measurements done a t  RIM = 10000 (see $3).  The transverse 
homogeneity of the velocity field was comparable to that of our previous studies; 
there were deviations in the mean velocity of a few per cent and deviations of the 
fluctuating velocity of about 4-5 % across the core of the flow, which was approxi- 
mately 11 mesh lengths wide (in both the y/M and z / M  directions) a t  x / M  = 40 and 
8 mesh lengths wide a t  x / M  = 100. The ratio u/v of the longitudinal to transverse 
fluctuating velocity was 1.03 a t  x / M  = 34, and decreased slightly with downstream 
distance, always remaining above unity. The salient parameters of the velocity field 
are listed in table I. 

The thermal field was produced by means of a mandoline, a parallel array of fine 
wires (Warhaft & Lumley 1 9 7 8 ~ ~ ) )  placed downstream from the grid. The (tungsten) 
wire diameter was 0.19 nim, giving a Reynolds number, based on the wire diameter, 
of 54. These wires, when either heated or unheated, had no measurable effect on the 
velocity field. The wire spacing was either M or 241, the actual configurations will be 
discussed below. Figure 1 shows the cross-stream profiles of r.m.s. temperature 
fluctuations for a case in which the mandoline was placed 2M from the grid with 2M 
spacing between the wires, which were orientated in the y-direction. The transverse 
homogeneity is good; there is less than 5 yo deviation in the r.m.s. temperature across 
the core, which is about 7 mesh lengths wide. The variation of the transverse mean 
temperature was negligible. Other mandoline configurations had similar transverse 
homogeneity profiles. 

Helium was fed into the flow through both ends of the upper set of hollow grid bars, 
which had holes of 0.16 cm diameter every mesh length, placed where the upper grid 

16-2 
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FIGURE 1. Transverse profiles of r.m.s. temperature for the mandoline (2, 2). The wires are 
oriented in the y-direction. A, x / M  = 34; 0, x / M  = 52. The units for r.m.s. 0,  which are the 
same for (a) and ( b ) ,  are arbitrary. 

bars crossed the lower grid bars (figure 2a). Small circular-cross-section tubes one mesh 
long, 0.1 6 em inside diameter and 0.23 em outside diameter were vertically positioned 
and soldered to the grid above the holes. These fixed tubes were used to  accommodate 
variable-length chimneys (0.23 em inside diameter, 0.33 em outside diameter) which 
were placed over them like a collar. The chimney lengths were varied from 2 to 6 mesh 
lengths for the various experiments to be described below; this allowed some vari- 
ation of the input scale of the helium fluctuations, and we were thus able to examine the 
dependence of the decay rate of helium variance and the decay rate of the cross- 
correlation between temperature and helium fluctuations psc on initial conditions. 

Figure 2 shows some typical grid and mandoline arrangements. Note that in 
figures 2 (a, b, d )  the helium is fed into the flow through chimneys 2M long, spaced 2M 
apart. Alternate tubes have been blocked off, and are drawn as dashed lines in the 
diagram. It will be shown that introducing the helium through chimneys spaced 2M 
apart, rather than M apart, changed the helium length scale, as did varying the length 
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Mandoline wires [ 2 , 2 1  

( b )  
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FIGURE 2. Some of the chimney and mandoline configurations. The dashed lines signify 
closed chimneys. 

of the chimneys. Furthermore, the helium fluctuations were significantly larger when 
the chimneys were 2M apart (also transverse homogeneity was much better); thus 
many more measurements were carried out for this case than for the cases where the 
chimneys were M apart. I n  figure 2 and for the description to  follow, the chimney 
configuration is described by two numbers in square brackets where the first number 
is the length of the chimneys and the second is their spacing, in mesh lengths. Thus 
[6, 11 means the chimneys are 6 mesh lengths long and are spaced one mesh length 
apart. This is the same notation used for the mandoline, except that square brackets 
rather than parentheses are used to distinguish the chimney from the mandoline 
configurations; (10,l) for example means that the mandoline is placed 10 mesh lengths 
from the grid, and the wire spacing is 1 mesh length. Two other chimney configur- 
ations were also used, they were [6, 21 and 12, 11, and are not shown in figure 2. 

Apart from providing a means of altering the helium length scale, the chimneys also 
straightened the incoming helium jets. However, there was less homogeneity in the 
transverse helium field than in the transverse thermal and velocity fields. Figure 3 
shows the transverse profiles of r.m.s. concentration in both the y- and x-directions as 
well as the mean-concentration profile in the 2-direction, the direction in which the 
helium was fed from both ends of the grid bars. The method of measurement of helium 
concentration c will be described below. The transverse homogeneity of mean concen- 
tration (figure 3a) is good, there is only a 2 % deviation from the mean. From this we 
calculated that production of helium fluctuations was negligible in the helium- variance 
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FIGURE 3. Transverse profiles for mean helium concentration (a) and r.m.s. helium fluctuations 
( b ,  c ) .  The units for helium concentration are (kg He/kg mixture) x 100. The helium is fed 
through. the grid bars along the z-direction. 

budget, since it was less than 2 yo of the dissipation term. I n  our preliminary tests the 
amount of helium entering the grid was varied until the optimum flow rate of 2.88 x 

m3/s per grid bar was arrived a t ;  slower flow rates gave a helium deficit a t  the 
centre of the grid, while faster flow rates gave an enhancement. It appears that the 
high degree of homogeneity attained is a result of the pressure loss along the hollow 
grid bars due to friction being balanced by the pressure increase due to deceleration 
of the flow in the bars which occurs when part of the helium gas escapes from the 
chimneys. The transverse homogeneity of the r.m.s. helium fluctuations (figures 3 b, c) 
is not as good as that for the temperature fluctuations (figure 1); the worst deviations 
are about 12% about the mean r.m.s. value a t  x / M  = 34, and this decreases with 
downstream distance. This departure from transverse homogeneity is comparable to  
that measured by Gad-El-Hak & Corrsin (1974) for their air-jet grid experiments. The 
co-flowing air speed of the r.m.s. profiles of figures 3 (b ,  c) was 3.4 m/s, lower than that 
used for the bulk of our measurements (4.7 m/s), although this small difference in air 
speed did not change the homogeneity. Considerably better homogeneity, however, 
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FIGURE 4. The decay of the longitudinal velocity variance. Circles are for the air only, crosses 
are for the addition of helium. 

was obtained with faster co-flowing air speeds (2 8 m/s), but at these higher air 
speeds the frequency response of our helium probe was inadequate. It should be noted 
that the degree of transverse r.m.s. helium inhomogeneity (figures 3 b ,  c )  is too small 
to affect the helium variance or flux budget; simple calculations show that the third- 
order transport terms were negligible compared with the dissipation term in the 
helium-variance equation. 

For all flows the total volume flow rate of helium leaving the grid was 2 . 3 ~  
m3/s. The air volume flow rate passing through the grid was 0-194 m3/s; thus the 

ratio of helium to  air volume flow rates was 1.19 yo, and the ratio of their mass flow 
rates was 0.164%. This very low helium volume flux (and hence mass flux) was used to 
ensure that helium was a passive additive. Figure 4 shows the velocity-variance decay 
with and without helium in the flow; there is no difference in their magnitudes. The 
ratio of the buoyancy term (glj3)pU to  the energy-dissipation term in the energy 
equation was less than 1 yo a t  x / N  = 80. Figure 4 also shows that the chimneys 
did not alter the form of the law for the 2 decay; from the graph s / U 2 =  
0 . 0 8 4 5 ( ~ / M ) - ~ . ~ ~  (see table 1) .  This compares well with velocity-variance decay laws 
for normal biplanar grids (e.g. Warhaft 1981). 

The average speed of the helium jets entering the flow was approximately 8 m/s for 
configurations [6,2] and [2,2], and 6 m/s for configurations [C;, 11 and [2,1] (the reason 
that the helium jet speed for these latter cases is not half that of the cases when every 
other helium chimney was closed ([6,2] and [2,2]) is because to obtain better horizontal 
liomogeneity for the [6, 11 and [ 2 ,  11 configurations, a number of the chimneys 
near the wall of the tunnel were closed). Thus for all cases studied here the speed of the 
incoming helium is faster than that of the co-flowing air (4.7 m/s and in some cases 
5 m/s). 

The mean temperature of the helium jet emerging from the chimneys was found to  
vary by as much as 1 "C from that of the air. However, the temperature fluctuations 
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Back wire (2) 
\ I Front wire (1) 

0.5 mm 
FIGURE 5. The 3-wire probe for the measurement of longitudinal velocity, 

helium concentration and temperature. 

caused by this difference were negligible by the time the helium jets had coalesced a t  
about x / M  = 30 (figure 9, to be discussed below, shows a typical temperature noise 
spectrum). 

2.2. The 3-wire Helium-temperature-velocity probe 

Helium c, temperature 8, and longitudinal velocity u, fluctuations were measured 
simultaneously by means of a modified two-wire ' Way-Libby ' interference probe 
(Way & Libby 1970,1971 ; Libby 1977) that was sensitive to the u- and c-fluctuations, 
and a third wire placed close to the interference probe that was sensitive to u, c and 8. 
A sketch of the probe is shown in figure 5. The interference probe consisted of a 3 pm 
diameter tungsten wire with an overheat OH of 1.2 and length/diameter ratio of 100 
placed approximately 5 pm in front of a 5 pm platinum-rhodium wire of OH = 1.6 
and l / d  = 200. Both wires were driven from DISA type 55M constant-temperature 
bridges. The angle between the two wires was approximately lo", so that a large 
portion of the front wire was in the thermal field of the back wire. The principle of the 
interference probe is that while the back wire follows King's law, the front wire does 
not; it is affected strongly by the variations of the thickness of the thermal field of the 
back wire, in which it partly resides. The thickness of the thermal field of the back 
wire is determined by both the variations of the velocity and the concentration field. 
If, for example, there is an increase in helium concentration, while the velocity field 
remains constant, the electrical power to the back wire must increase (in order to hold 
its temperature constant) owing to the higher thermal conductivity of the helium; 
however, the voltage of the front wire may actually decrease because it is being affected 
more strongly by the larger thermal field of the back wire. Thus the two wires respond 
differently to the presence of c and u, and by proper calibration and inversion tech- 
niques these two fields can be determined unambiguously (for more detailed dis- 
cussion see Libby 1977). The actual degree of heating of the front wire by the back 
wire, of course, depends on their relative overheats and proximity, and because no 
two wires are the same the calibration characteristics vary greatly for different 
interference probes. 

Figure 6 shows a typical calibration mesh for one of our interference probes. Note 
that we are only concerned with very low helium concentrations; compare figure 6 
with the calibration of Stanford & Libby (1974, figure 2) for example. From this mesh 
(figure 6) for a given voltage pair El, E, (where E, is the voltage of the front wire and 
E ,  is the voltage from the back wire), unambiguous values of u and c may be obtained. 
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z (V2) 
FIGURE 6. The calibration mesh for the interference probe (wires 1 and 2 of figure 5). 

1 10 100 1000 

f (Hz) 

FIGURE 7. Velocity spectra derived from the interference probe. The three spectra are for air 
only, air with helium, and air with helium and temperature fluctuations. Their levels are within 
a few per cent of each other. The measurements were made at z/M = 54. 
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FIGURE 8. Spectra of concentration fluctuations derived from the interference probe. Lower 
curve is the helium noise spectrum. The two upper curves are with helium in the flow and with 
helium and temperature fluctuations in the flow. Their levels are within a few per cent of each 
other. The measurements were made a t  x /M = 34. The units of c used throughout this work 
are (kg He/kg mixture) x 100. 

The actual details of the calibration process (in which both the helium concentration 
and mean velocity were varied in a calibration tunnel) are given in Sirivat (1982). The 
voltage pairs were inverted in the same manner as described in LaRue & Libby (1977) ; 
a preliminary inversion was also done using the method of Way & Libby (1971), and 
the same results were obtained. All data analysis and acquisition was done on a PDP 
11/34 minicomputer. 

I n  order to measure temperature fluctuations simultaneously with u and c a third 
wire was placed close (within approximately 0.5 mm) to the interference probe 
(figure 5). This was a tungsten wire of 3 ,urn diameter and l l d  = 200, operating at  a low 
(but not negligible) overheat of 1.05, alsoina constant-temperature mode. This wire was 
sensitive to all three fields i.e. u, c and 6. We note that the thermal fluctuations were 
very weak in these experiments (approximately 0.1 "C r.m.s. maximum), and it was 
found that the interference probe, operating a t  moderate overheats, was insensitive 
to  them. Figure 7 shows the velocity spectra derived from the interference probe 
without the presence of any scalar field, with He fluctuations present, and with both 
He and temperature fluctuations present. The level does not change with the addition 
of the scalars. I n  particular, it should be noted that the presence of the thermal field 
does not affect the level of the velocity spectrum, which was deduced by inverting the 
calibration of figure 6. The lack of interference by the 6-field on the interferenee 
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FIGURE 9. Temperature spectra derived from wire 3 (figure 5 )  after correcting for helium and 
velocity fluctuations. The lower curve is the noise spectrum, the two upper curves are the 
teniperature spectra with and without the noise spectrum subtracted. Their levels are within 
a few per cent of each other. 

probe is further borne out by the c-spectrum of figure 8. The two upper spectra, 
measured with helium only and with helium and temperature fluctuations both 
present, are essentially the same. The lower spectrum is the noise level for the helium 
fluctuations (measured with no scalar field in the flow), and its value of 0.015% 
(kg He/kg mixture) compares well with tjhe r.m.s. noise measured by Stanford & 
Libby (1974). Note that our inversion procedure could not erradicate some sensitivity 
to  the velocity field, but this spectrum is nearly two decades below that of the signal 
in the energy-containing range (approximately 100 Hz) and about one decade below 
the signal in the dissipation range (approximately 1000 Hz, see $3) .  The overall 
signal-to-noise ratio c2/ci was approximately 60/1 for this example, and did not 
decrease significantly with x / M .  While this ratio is not high enough to deduce 
information about the dissipation range, it is clearly high enough for studying the 
energy-containing range, the subject of this enquiry. 

Figure 9 shows the temperature spectrum. The temperature time series from which 
this was calculated was obtained from the third wire, which was sensitive to  u, c 
and 8 ;  i.e. the voltage from wire 3, E3 was assumed to be of the form 

(1) 

- -  

E; = ( A ( c ) + B ( c )  UO.5) (o-w-o)) 
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where A(c) and B(c) are polynomial functions of the instantaneous He field (deduced 
from the interference probe), 8, is the wire temperature and 8 is the instantaneous 
temperature of the medium. Equation (1) is of the same form as the equation for wire 2 
of the interference probe (which also follows King's law) except that for wire 2 the 
last term in parentheses (8, -8) was essentially constant because of the much higher 
wire overheat (for wire 2 Ow is of the order 400" above ambient, while for wire 3 8, 
was only of the order of 10" above ambient temperature). Note that as for the 
c-spectrum, there is a turbulence-type noise spectrum (lower curve, figure 9) but 
when this was subtracted from the measured &spectrum it did not significantJy alter 
its level (two upper spectra), except in the high-wavenumber region of the spectrum. 

The temperature and velocity spectra measured with the 3-wire system were com- 
pared with the temperature and velocity spectra measured using conventional 
methods (a high-response resistance thermometer and a constant-temperature 
anemometer a t  1.8 OH) in the same flow but without helium fluctuations. The levels 
of the spectra were the same up to about 1200 Hz, and the total temperature and 
velocity variances using the two different methods were within a few per cent of each 
other. Since the frequency response of the conventional instruments had been deter- 
mined to be higher than the Kolmogorov frequency it follows that the three-wire 
system has an adequate frequency response to 0- and u-fluctuations. Furthermore, 
since the method of measuring 6' and u involved all three wires, we believe that the 
frequency response of the system to the helium fluctuations should be comparable to  
that of the velocity and temperature response, since the same 3 wires were used for 
measuring the helium fluctuations. We note (see tables 2 and 3, $ 3  below) that the 
Kolmogorov length scale is larger for helium than for temperature, i.e. the frequency 
response needed to detect the helium fluctuations is less than that required for tem- 
perature and velocity. 

Finally we note that our initial aim was to measure the temperature fluctuations by 
means of the fine platinum resistance wire (operating in a constant-current mode) used 
in our previous measurements (Warhaft & Luniley 1978 a, b) .  However, preliminary 
measurements with the helium in the flow produced a very spiky voltage that was a 
strongly nonlinear function of helium concentration. The wire was also much more 
sensitive to the helium fluctuations than to the temperature fluctuations. Thus this 
approach was abandoned in favour of the constant-temperature tungsten wire 
described above. 

3. The results 
We will examine first the decay of temperature variance, and compare this with the 

helium-variance decay measurements. Then we will describe the heat- and concen- 
tration-flux measurements, and finally we will study the scalar-covariance measure- 
ments, comparing the direct method of injecting both helium and temperature 
fluctuations with the inference method, which uses temperature only. 

3.1. The scalar-variance decay 

3.1.1. The temperature variance. Figure 10 shows the decay of t,hermal variance @ 
for 3 different mandoline configurations, and table 2 lists the various fluctuation 
characteristics of these flows. The decay-rate power laws (table 2) were determined 
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xIM 
FIGURE 10. The decay of temperature variance downstream of the mandoline. ., mandoline 

configuration (2, 2);  0, (10, 1); x , (10, 2) .  See table 2 for values. The origin is at  the grid. 

by a least-squares fit to the data. The origin has been taken a t  the grid ( x / M  = 0); no 
virtual origin was needed to fix the best straight line through these data, or through 
the helium-variance data to be described below. The decay rates compare well with 
those of our previous studies for the same mandoline configurations, even though here 
the RM is only 3560, compared with approximately 10000 in our previous work. It 
should be noted that the decay rate of @ is independent of the initial value of @ 
(Warhaft 1980, 1981) and hence of the overheat of the mandoline wires. For the 
approximately isotropic grid turbulence of these experiments the decay rate of @ is 
solely a function of the ratio of the input thermal length scale to input velocity length 
scale; and the input thermal length scale is determined by the mandoline configur- 
ation, i.e. by the distance the mandoline is placed from the grid and by the spacing 
between the mandoline wires. By either moving the mandoline away from the grid or 
by decreasing the spacing between the mandoline wires the thermal scale is decreased 
relative to  the velocity scale, and thus the thermal-variance decay is increased.? Thus 
for the mandoline at  (10, 2) and a t  (10, 1) the decay exponent mg in the decay law 

t The only exception to this appears to be if the mandoline is placed very close to the grid 
(within one or two mesh lengths). Here the thermal length scale appears to be controlled by the 
velocity wakes, and the mandoline wirc spacing is a less sensitive parameter in determining the 
thermal-variance decay rate. 
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0 

3.624 102 
1.84 2-34 
1.38 1.76 

- 
0 2  = A o ( x / M ) - m s  (0C)Z 

€# = --- ("C2/S) 1.51 x 7.34 x 10-2 

@ (°C)2 (from decay law) 9.01 x 10-3 
I I T e  (m) 5.02 x 1 0 - 3  3.94 x 10-3 
kg (from 3-dimensional spectrum) (m-l) 175 200 
(F), = "#(Y/€)!: (V) 1.71 x 10-4 8.32 x 10-4 

ro = nag/n- 
1 do2 
2 dt 

2 .35  x 10-3 

1 I I I I I I I I I 

440 
2.95 
2.22 

3.50 x 

3.41 x 10-3 
3.12 x 10-3 

3.97 x 10-4 

5.06 x 10-4 

230 

TABLE 2 .  Temperature field parameters for the various mandoline configurations. = 4.7 m/s, 
Prandtl number Pr = U / K  = 0.73, where K is the thermal diffusivity. Fluctuation parameters 
were calculated for z / M  = 54. 

3 

't 

varies from 2.34 to 2.95 (figure lo) ,  even though the mandoline is the same distance 
from the grid in both cases. This is because the wavenumber of the peak in the tem- 
perature spectrum is higher for (10, 1 )  than for (10, 2 )  since the mandoline wires are 
closer together. On the other hand, keeping the mandoline wire spacing fixed but 
moving the mandoline away from the grid also increases the wavenumber a t  which 
the thermal fluctuations are introduced relative to the velocity wavenumber, since 
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the velocity scale grows with downstream distance although the thermal input scale 
is fixed for this case. Thus the decay rate for ( 1 0 , 2 )  is greater than for ( 2 , 2 )  (figure lo).? 

Figure 11 shows a compilation of the present work and all the previous experiments 
of @ decay we have so far conducted in different wind tunnels and a t  various R,eynolds 
and Pirclkt numbers (Warhaft & Lumley 1978a; Warhaft 1980). Although there is 
some scatter, i t  is clear that the time-scale ratio 

where 2 is twice the turbulence kinetic energy, and E and q, are the destruction rates 
of turbulence kinetic energy and temperature variance respectively, is a monotonic 
function of k,/k,, the ratio of the velocity length scale to the thermal length scale. 
Whether r, (which is equal to m,/n from the power-law decays of @ and 2, Warhaft 
& Lumley 1978a) is a linear function of k,/k,, is still not clear, since there is too much 
scatter in the data to determine the precise functional relationship. 

3.1.2. The helium variance. Figure 12 shows the decay of helium variance S f o r  four 
different chimney configurations, and table 3 lists the various fluctuation character- 
istics for these four flows. (Figure 2 shows the chimney configurations for the flows 
[2 ,2]  and [6,  11; configurations [ 6 , 2 ]  and [2 ,  I] are not sketched.) As for the mandoline 
experiments the decay rate of 3 is a function of initial conditions; nz,, the decay 

exponent in the law - 
c2 = A c ( x / M ) - y  (4) 

varies from 1.47 (chimney configuration [a, I]) to 2.84 (chimney configuration [6 ,  I]).$ 

t I n  a recent paper Sreenivasan et al. (1980) report results that suggest the decay rat,e of @! 
is independent of mandoline- (screen in their terminology) wirc spacing and the distance of the 
mandoline from the grid; results that appear to be in conflict with those reported liere and in 
our previous work. However, Sreenivasan et al. placed their screen (which was a square-mesh 
configuration) very far downstream ( x / M  2 20), and their wire spacing was always less t.hnn 
1M. Thus in all of their work the input thermal length scale is much_smallcr than the velocity 
length scale. At these small scales their results suggest that the O2 decay rate has reduced 
sensitivity to its input conditions. I n  our work the mandoline has been placed x / M  < 20 from 
the grid, and the thermal length scale has been varied from approximately equal to thaL of the 
velocity scale to approximately one-third the velocity scale; here the sensitivity of the O 2  decay 
to input conditions is clearly evident. This difference between the initial conditions used in our 
work and in the work of Sreenivasan et al. has been furthcr borne out by a recent investigation 
of scalar variance decay by Durbin (1981), using a Lagrangian dispersion theory. We note also 
that plotting our data using the mandoline the origin (rather than the grid), as Sreenivasan 
et al. do, still preserves the variatiorn in our O2 decay; decreasing the input thermal scale is still 
associated with an increase in the O 2  decay rate. Furthermore, we find that using the mandoline 
as the origin can result in ambiguity. For example in Warhaft (1981) it has been shown that the 
same input thermal scale may be achieved if the mandoline is at (10 , l )  or at (15,2).  The effcct of 
moving the mandoline away from the grid (decreasing the length scale) has been exactly com- 
pensated by increasing the distance between the mandoline wires (which has the effect of 
increasing the length scale). For both these cases the same decay rate of O 2  is observed if tho 
data is plotted from the grid. I f  the data were plotted from the mandoline, different decay laws 
would result for the same thermal length scale. 

$ For the case [ G ,  11 the helium field became inhomogeneous at approximately x / M  = GO, 
and thus we have no evidence for the decay beyond this point. The reason this flow became 
inhomogeneous was that a number of chimneys near the wall were blocked off to produce 
transverse homogeneity at  the initial stages of the flow (§S.l) ,  this, however, caused a much 
larger helium boundary layer, and the corc became intolerably small becausc of this after 
x / M  = G O .  



490 A .  Sirivat and 8. Warhaft 

4 

10-4 I 
10 20 30 50 100 200 

XlM 

FIGURE 12. The decay of helium variance downstream of the chimneys. 0, chimney configur- 
ation [a, 11; x , [2, 21; 0, [6, 11; 0 ,  [6, 21. See table 3 for values. The origin is a t  the grid. 

Figure 13 shows the 3-dimensional spectra of the helium fluctuations at x / M  = 54, 
and as for the mandoline experiments, it is evident that there is a definite correspon- 
dence between the 2 decay rate and the scale of the helium fluctuations, i.e. smaller 
scales are positively correlated with faster variance decay rates. Note that for the 
case [2,1] the helium scale is slightly larger than for the case [2 ,2]  (figure 13), a result 
contrary to expectation, which would have suggested that [ 2 , 2 ]  would have produced 
a larger scale since the chimneys are further apart (cf. the cases [6, 11 and [B, 21). 
However, the positive correlation between faster decay rate and smaller input scale 
is still preserved: m, for the case [2 ,  21 is greater than for the case [a ,  I] (table 3), in 
keeping with the smaller scale for the former case. 

Because of difficulties in measurement of the helium fluctuations, and the greater 
inhomogeneity of the helium field compared with that of the thermal field, we carried 
out a number of cTdecay measurements for each chimney configuration over the many 
months of the experimental programme. Various probes were used with different 
calibrations, and for each experiment the flow conditions and homogeneity in the 
helium field were found to vary. Figure 14 is a summary of these experiments. The 
ordinate is the helium time-scale ratio defined as 

r e  = ( ? / 4 / ( C T / % L  ( 5 )  
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Chimney configuration [2, 11 [2, 21 [C, 21 [6, 11 
i7 (m/s) 5 4.7 4.7 5.0 
- 0.299 1.63 16.02 210.0 

1.47 1.69 2.05 2.84 
1.11 1.27 1.54 2.14 

4.62 x 10-3 1.13 x 3.21 X 2.64 X lo-' 

3 (from decay law) 8.49 x 10-4 1.93 x 10-3 4.50 x 10-3 2.53 x 10-3 
6.24 x 10-3 5.46 x 10-3 4.50 x 10-3 3.24 x 10-3 1I.c (4 

(c7)k = € , ( V / E ) ! i  5.22 x 10-5 1.28 x 10-4 3.64 x 10-4 2.98 x 10-4 

8.67 x 10-4 9.02 x 10-4 9.02 x 10-4 8 m  x 10-4 

k ,  (from 3-dimensional 
spectrum) (m-l) 126 130 152 190 

1 1 4  
? I c  = &) (4 

TABLE 3. Helium field parameters for various chimney configurations. Schmidt number 
Sc = v / D  = 0.23, where D is the helium diffusivity in air. Units for c are (kg He/kg mixture) 
x 100. Fluctuation parameters were calculated for z/M = 54. 

0 

FIGURE 13. The three-dimensional helium spectra at x / M  = 54 for the four helium 
variance decay experiments of figure 12. 

where ec is the dissipation rate of helium variance. rc = mC/n since cz follows a power- 
law decay. The abscissa is the ratio of the peak in the 3-dimensional helium spectrum 
to that of the %dimensional velocity spectrum. Although there is scatter for reasons 
mentioned above, it is clear from this plot that  as for the temperature variance, rc is 
approximately proportional to k,/kqL. The solid line is the line of best fit to  these data 
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FIGURE 14. The helium time-scale ratio rC us. the wavenumber peak of the helium spectrum 
divided by the wavenumber peak of the velocity spectrum a t  z / M  = 54. 0 ,  chimney con- 
figuration [6, 11; @, [6, 21; 0, [2, 21 and [2, 11. The dashed line is the line of best fit for rg,  from 
figure 11 .  

points. The dashed line is the line of best fit for all our thermal-variance decay measure- 
ments (figure 11). The line for the temperature measurements falls below that of the 
helium measurements, showing that for a given scalar time scale ratio, the helium 
length scale is larger than the thermal length scale. We note that by definition, the 
helium Taylor microscale A, is larger than the temperature Taylor microscale A, when 
r, = r,. This may be shown by substituting the formal definitions 

- 
&, = 6KO2/h:,  ec = GDC2/h: (6) 

into the definitions ofr, and rc, (3) and (5).  The equation 

r, /r ,  = ( K/D)  A:/hi = 0.31 A:/h2, ( 7 )  

results. For r, = re, A, = 1.8Ag. The larger value for the helium integral scale (figure 14) 
for rg = re is thus consistent with the larger value of the Taylor microscale for the 
helium fluctuations, although from a theoretical viewpoint it is not clear how these 
two scales should be related for scalars. Whether the departure from the parallel of 
the r, and r, line in figure 14 is of significance or is due to experimental scatter is also 
unclear. 
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FIGURE 15. The decay of the cross-correlation between u and 0. m, mandoline configuration 
(2, 2); 0, (10, 1);  x ,  (10, 2); A, (20, 1 )  (the top curve is taken from Warhaft & Lnmley 1978b).  

3.2. Heat- and mass-JEux decay 
The decay of scalar variance @ and z7 described above, is due to the destruction of 
the scalar fluctuations by the action of molecular dissipation. The governing equations 
aref 

If the input scalar field is by some means correlated with the velocity field then a 
flux a or E will exist, and this too could be expect,ed to decay. The existence of a 
scalar flux represents anisotropy in the scalar field, and the decay of the flux is due to 
the return to isotropy of the scalar field. Thus the mechanism for the decay of t,he 
scalar flux is quite different from that of the decay of scalar variance. It is governed 

by the equations - 
due i -  a- -- - - -e - - ( v+K) - -  
dt p ax, axj ax,, 

- duc = --c--((v+D)--. 1- ac aui 
at p axi axj axj 

Since in locally isotropic turbulence the molecular transport terms on the right-hand 
sides of (10) and (1 1) are negligible, the rate of change of the scalar flux is due solely 
to  the scalar-pressure derivative correlation, which effects the return to isotropy. 

3.2.1. The heat-$ux correlation coeficient. Figure 15 shows measurements of the 
decay of pu0( = (u3)/(u2 O2)4), the cross-correlation of u and 8. We will use pus, rather 
than a, since the correlation coefficients facilitate better comparison of results. The 
results shown are for the measurements done in the present tunnel as well as for those 
done previously in a tunnel of larger cross-section (Warhaft & Lumley 19783). All are 
for heated mandolines placed a t  various distances from the grid. The flux is produced 

t Turbulent production and transport terms have been neglected in these equations, and 
(lo)-( 12) and (15) to  follow, smce our f lows u ere approxnnately homogeneous ( 9  2 ) ,  and these 
terms account for only a few per cent of the variance, covrtrianci: and flux budgcts. 

-- 
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FIGURE 1G.  The decay of the cross-correlation betweon u and c .  The three trials 

are all for the chimney configuration [2, 21. 

by increasing the current in the mandoline; the mechanism of flux productionis thought 
to be due to  the slight velocity deficit (produced by the mandoline), which causes a 
negative cross-correlation between u and 6 but is too small to effect the velocity 
field, although the mechanism suggested in Warhaft (1980) may also play a role. 

Figure 15 shows that the decay rate of pue is a function of the mandoline configur- 
ation, i.e. the scale of the thermal fluctuations relative to the velocity scale. Thus for 
( 2 0 , l )  the return to isotropy is faster than for (10,2),  and for (2 ,2)  pus hardly decays a t  
all. This latter situation, where the mandoline is placed very close to the grid and thus 
is directly in the wake of the grid bars is quite similar to the decay of pue for heated- 
grid experiments (e.g. Warhaft & Lumley 1978a, figure 19)) where it is also found that 
pue decays very slowly, if a t  all. 

It appears that  if the scalar is injected at, or close to, the grid it hardly forgets its 
mode of generation, and remains forever coupled to the velocity field, and there is no 
return to isotropy. Note that for this case re N 1, and the thermal and velocity length 
scales are approximately the same. However, if the scalar flux is introduced into the 
flow far downstream where the velocity wakes have coalesced and the velocity field is 
approximately isotropic, then the p?,o decays, and there is a return to  isotropy of the 
scalar field. Here the length scale of the thermal field is determined independently of 
the velocity field, unlike the case when the scalar is injected close to  the grid. 

The case in which the flux is produced far downstream of the grid is amenable to 
theoretical treatment, since the turbulent field is isotropic. For this case Lumley (1978) 
has successfully applied second-order modelling procedures to  estimate the rate of 
return to isotropy. For the heated-grid case, and for the mandoline placed close to the 
grid, the heat flux is formed in a strongly anisotropic flow, and the large-scale coherence 
produced by the grid-bar wakes makes this problem less amenable to  the theoretical 
treatment, although it should be of considerable interest since it shows that under 
these conditions there is virtually no return to isotropy of the thermal field. 

3.2.2. The heliumJEux. For the cases where the helium chimneys were placed two 
mesh lengths apart the speed of the incoming helium gas was significantly higher than 
that of the co-flowing air ( § 2 ) ,  and thus a positive cross-correlation between u and c 
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FIGURE 17. The decay of the cross correlation between 19 and c. x , mandoline and chimney 
configurations (10, l ) ,  [2, 21; V, (10, 2),  [2, 21; 0, (2,  2) ,  [2, 21. 

would be expected. Figure 16 shows pw: for the chimney configuration [2, 21 for three 
slightly different helium injection speeds (but in all cases with the helium velocity 
greater than the air velocity). Here, as for the mandoline at (2, a) ,  the decay of puc is 
slow, i.e. the grid-bar wakes appear to cause a strong coupling of the helium field to 
the velocity field, and this coupling remains for the flow duration. Note also that here 
the helium flux is positive, as opposed to the heat flux, which was negative, but there 
is little qualitative difference in the nature of the cross-correlation decay for the 
two cases. 

Unfortunately we were unable to examine a case for helium-flux decay in which the 
helium was fed into the flow a t  a smaller scale than the velocity field. For the chimney 
configuration [6,1] the speed of the incoming helium gas was approximately the same 
as that of the co-flowing air, and a cross-correlation between the two fields could not 
be determined with any accuracy. We were unable to alter the relative speeds of the 
helium and air for this case by a significant amount because of problems in maintaining 
transverse homogeneity in the helium field. 

3.3. The scalar-covariance decay 

The rate equation for the decay of scalar covariance in the absence of any production 
mechanism is 

a& z m  
- = - ( K + D )  - -. 
dt axj axj 

Here, as for the decay of the individual variances, the covariance is destroyed by t,he 
action of molecular dissipation. 

I n  Warhaft (1981) an inference method (involving a single scalar injected into the 
flow a t  two different downstream locations) was used to determine scalar-covariance 
decay. Here we will first describe the direct method of measuring scalar-covariance 
decay by injecting the two different scalars, helium and temperature, into the flow, 
and then we will compare this method with the inference method. 

Figure 17  shows the pec decay for three different mandoline and chimney configur- 
ations. Sketches of configurations (2, 2), [2, 21 and (10, 1), [2, 21 are shown in 

(12) 
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FIGURE 18. Comparison of po, as a function of x / M  for both positive and negative initial values. 
The mandoline-chimney configuration is ( 2 , 2 ) ,  [ 2 , 2 ]  for all cases. .,pe, is negative (mandoline- 
chimney configuration of figure 2 a ) ;  x and -t , Pee is positive (two different trials, mandoline- 
chimney configuration of figure 2 b ) .  
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FIGURE 19. The decay of the two-scalar covariance 
XlM 

x , mandoline and chimney 
configurations (10, 1 ) ,  [ 2 ,  21; +, ( 2 ,  2 ) ,  [ 2 ,  21: 0, (10, 2 ) ,  [ 2 ,  21. 
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figures 2(a, cl)respectively.The (10,2),  [2,2] configuration is the same as (2,2), [2,2] but 
the mandoline has been moved to  10 mesh lengths from the grid, with the wires still in 
the same lateral position with respect to the chimneys as in (2 ,2 ) ,  [2,2] of figure 2 (a) ,  
i.e. they are displaced one mesh length in the transverse direction with respect t o  the 
chimneys. As for the pus decay (figure 15), figure 17 shows that the decay of the scalar 
cross-correlationis slow if both scalars are introduced close to the grid, (2 ,2) ,  [2,2], but 
the decay is rapid if there is a significant mismatch in the scales of the two scalars, i.e. 
if one scalar is introduced close to  the grid and the other is introduced further down- 
stream, at a much smaller scale, cases (10,  l), [2, 21. The case (10, 2), [2, 21 is inter- 
mediate between the above two cases; here the thermal length scale is not as different 
from the helium length scale as for the case (10, I), [2,2]. (Figure 10 shows that for (10,l) 
the decay rate of OTis much more rapid than for (10,2), indicating a much smaller length 
scale for the former case, see also table 2.) Note that for these three experiments Poc is 
negative, as could be expected from the relative positions between the chimneys and 
mandolines, i.e. there is generally a helium deficit where there is an enhancement in 
temperature. (This is clearly the case for (2 ,2) ,  [2,2] (figure 2a) and for the case (10,2),  
[2,2] ; for the case (10, l ) ,  [2, 21 (figure 2 d )  the situation is less clear since some mando- 
line wires are directly above the chimneys and others are in regionsof depleted helium.) 

Other mandoline and chimney configurations were also tried (Sirivat 1982), and 
these tended to  confirm the trends shown in figure 17, although we were unable to 
produce as high initial cross-correlations as shown in figure 17. 

In  order to determine whether the decay rate of pee was a function of the sign of the 
initial psc, the niandoline was moved to the position shown in figure 2 ( b ) ,  i.e. it was 
still a t  (2, 2) but was moved one mesh laterally so that i t  was very close to (but not 
touching) the chimneys. Figure 18 shows that for this configuration pe, was positive, 
as would be expected; however, its (slow) decay rate was similar to  that for the con- 
figuration (2,2),  [2,2] shown in figure 2 (a ) ,  where the negative correlationwas observed. 
Two different trials for the positive p,, are also shown in figure 18, and these indicate 
that the decay rate appears to be independent of the initial magnitude of the cross- 
correlation, for the small variation in the initial value of psc that  we were able to attain. 

Figure 19 shows a plot on log-log co-ordinates of the %decay, and here we see that 
in accordance with the cross-correlation coefficient the decay rate of 8c is slow when 
the two scalars are injected close to the grid, (2, 2),  [2, 21, while if there is a strong 
mismatch in their input scales the covariance decay rate is fast, (10,  l ) ,  [2, 21; the 
exponent m,, in the decay law 

varying from 2.2 to 5.9 for the two respective cases. 
&a= (x/M)-msc (13)  

3.4. Comparison of the direct method of measurement of scalar Covariance decay 
with the inference method 

Warhaft (1981) showed that by placing two mandolines a t  different longitudinal 
downstream positions from a grid that the decay of scalar covariance could be inferred. 
The sum of the thermal variances produced by each mandoline operating separately, 
@+%, was found to be significantly less than the total variance produced by both 
mandolines operating simultaneously: 

- - -  - 
6; = (8, + 6,j2 = 8; + f?: + 28, O,, (141 

i.e. the deficit was due to the covariance term 2 0 7 .  The decay of O,8, and 
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FIGURE 20. Comparison of the two-scalar covariance decay using the direct method (Po,) and 
the inference method (PolQ,). x , mandoline and chimney configuration (10, l ) ,  [2, 21 (from 
figure 1 7 ) ;  0, mandolines a t  (10, l), (2, 2), present work; 0, mandolines at  (10, l ) ,  (1.5, 2) from 
Warhaft (1981). 

- -- 
polo, ( E e18,/(8,2i3~)~) was studied for various input thermal scale sizes and for various 
input locations. 

For the inference case the governing equation is 

a e z  -- - -2K--, de,8, 
at axj axj 

while for the direct method described above (93.3) the governing relation is (12), is. 
the form of the equations is the same but the coefficients differ by a factor of two since 
K + D  = 9.56 x m2/s, (15). Because K and D are 
of the same order, we expect the destruction mechanisms of the scalar covariances 6G 
and Ox to be similar ; significant differences in scalar-covariance dissipation should 
only become apparent if the two diffusivities differ by an order or greater, such as for 
the case of salinity and heat in water. 

Figure 20 shows the decay of pBIB, for the case (10, 1)) (2, 2 )  using the inference 
method, compared with the direct method for the case (10, l),  [2, 21 taken from 
figure 17. There is extremely good agreement between the two different methods for 
which the input conditions are similar. Also plotted on figure 20 is the decay of 
pel e2 for the same mandoline configurations taken from the work of Warhaft (1981)) 
which was done in a tunnel of four times the cross-sectional area. We see that 
there is no difference in the Po, B, decay, indicating that this quantity is independent of 
Reynolds number for the moderate Reynolds-number variation (3560 and 10 000) 
investigated. For the inference method the decay exponent for 8TLwas -5 .5  
(Warhaft 1981)) while for the direct method the decay exponent for 8c was -5 .9  
(figure 19), again showing good agreement between the two methods. 

For all the inference experiments reported in Warhaft (1981) the two mandolines 
were placed a t  different longitudinal positions from the grid, whereas for the direct 
measurements we have described above there were some experiments in which both 
scalars were fed into the flow at the same distance from the grid, i.e. the mandoline 

m2/s, (12), and 2~ = 4.52 x 
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and chimney configurations ( 2 ,  2 ) ,  [2 ,  21 (figures 2 a ,  b) .  For these cases, which are 
important because they are similar to the way reactants are fed into turbulent flows, 
the decay of psc was slow (figure 17),  indicating a slow rate of mixing of the two scalars. 
I n  order to simulate this situation by means of the inference method we placed a 
mandoline two mesh lengths from the grid, with one mesh spacing between the mando- 
line wires. First the electrical current was passed through every alternate mandoline 
wire and the variance @was measured, then these wires were turned off and the same 
current was fed into the wires which had previously remained cold and the variance 
@was measured. The situation is as if two mandolines with configuration ( 2 ,  2) were 
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FIGURE 23. @ and B,8, decay for the inference method-for a _mandoline with wires one mesh 
apart placed ten mesh lengths from the grid. 0 and x ,/3: and 0; with alternate wires operating 
giving two mandolines of configuration (10, 2) at the same distancefrom the grid, with one 
mandoline displaced one mesh length laterally from the other; 0, 0; for all mandoline wires 
operating together with the same current in each wire as for the case when alternate wires were 
heated; v , inferred from the variance decay, (14). 

positioned such that one mandoline was displaced laterally one mesh length from the 
other. Note that this is similar to the helium-temperature configuration shown in 
figure 2 (a ) ,  but with the helium chimneys replaced by another mandoline. Finally 
both sets of mandoline wires were turned on simultaneously, with the same current in 
the wires as for the case where the alternate wires were operating. The variance 
measured for this case is (8, + 8,)2 = @. This final situation is as if the mandoline 
configuration was now ( 2 , l ) .  The results of the variance decay are plotted in figure 21. 
@ and z a r e  the same, as they should be, since both are for the same mandoline 
configuration ( 2 , 2 ) ,  and with the same current. When both mandolines are operating, 
however, the variance, @ is drastically reduced, but the decay rate is approximately 
the same.? Also shown on figure 21 is the scalar-covariance decay Ole, determined 
from (14). Its decay rate is approximately the same as that of the individual variances. 

Figure 22 shows the cross-correlation coefficient inferred from the results of 

__ 

figure 21, i.e. 

The value of pole, is approximately - 0.85, and its rate of change is very slow (if a t  
all). Both the negative value and the slow rate of change are in agreement with the 

,4 similar reduction in temperature variance has been observed in heated-grid experiments: 
when all tlie grid bars were licated a smaller temperature variance was observed than whcn 
alternate bars were heated with the same current (Warhaft & Lumley 1978a, Sreenivasan et al. 
1080). For an explanation of why the decay rates are approximately the sanic for tlie experi- 
ments ( 2 ,  1 )  and (2,  2) see the footnote on p. 487. I n  fact, the decay rate for (2, 1) is slightly slower 
than for ( 2 ,  2) (figure 21). The same anomalous effect was observed when the helium was injected 
very close to tlie grid at r2, 11 and [2 ,  21 ($3.1.2).  
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FIGURE 24. The cross-correlation polo,  as a function of x / M  derived from (16) 
for the data of figure 23. 

direct method, i.e. with the mandoline and chimney a t  (2, 2 ) )  [a, 21 (figures 2 a  and 17) .  
The large magnitude, however, implies almost-perfect anticorrelation between 8, and 
0,. We note that for polo, = - 1 the thermal fluctuations would completely disappear 
(with, of course, the same variance existing when the alternate wires were heated), 
and thus 8, would be exactly equal to - 8,. 

Finally, the above experiment was repeated, but now for the same mandoline (with 
wires spaced one mesh apart) moved to  ten mesh lengths from the grid. Figure 23 shows 
the variance decays: for the two situations in which alternate wires were heated, e," 
and @ were measured and the decay exponent in (2) was 2-33. When all the wires were 
heated, with the same current in each wire as used for the cases when alternate wires 
were heated, the decay exponent has increased to 3.0. This is as would be expected, 
since now the mandoline configuration is ( 1 0 , l )  and the higher decay rate occurs since 
wires are closer together (this result is of course the same as in figure 10, although 
different heating currents were used there). Note, as for the case when the mandoline 
was two mesh lengths from the grid, that the magnitude of the variance @ is much 
less than when only alternate wires were operating. However, for the case when t,he 
mandoline was two mesh lengths from the grid, the decay rates for ( 2 , 2 )  and ( 2 , l )  were 
approximately the same (figure 21). 

Figure 24 is a plot of the scalar cross-correlation, determined using (16)) for the data 
of figure 23. The cross-correlation increases with x / M .  This remarkable result is in 
accord with the decay laws: if the decay law for the two cases for the mandoline 
(10, 2) is 

and that for all wires operat'ing, (10, 1 ) ,  is 
- 
0; = B(x/M)-"z, 

then substituting (17) and (18) into (16) we find 

pel& = - l ( 1 -  (B/2A) (x/M)-rnz+"1). 
- 

For the data of figure 23, @ - @ = 28.2 ( X / & ! ) - ~ . ~ ~  and 8% = 166.4 (x/M)-~.O, thus 

pBlez = - i[ i  - 2.95 ( x / ~ 1 ) - o ~ ~ 7 7 1 .  (20) 
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Equation (20) shows that lP&021 will increase and asymptote to a value of - 1.  Note 
however that for m, N m2 (as is for the case depicted in figure 21, niandolines ( 2 , l )  and 
(2,2)) (19) shows that pBlez will be constant, as is observed (figure 22). 

Equation (19) also shows that the form of the pBt8, decay depends only on the rate 
of decay of the individual variances. Since m2 will always be greater than m, (apart, 
that  is, from the special case where the mandoline is placed very close to the grid) 
because a smaller thermal mesh is associated with a faster variance decay, lpBlszl must 
always increase for this type of experiment where the scalars are introduced far down- 
stream from the grid in the same plane. The initial magnitude of p&02, however, 
depends on the ratio B/2A, (19), and this ratio could conceivably be changed by 
changing the relative phases of 0, and 0,) i.e. by changing the spacing between the 
wires. I n  the experiments described here the wires were one mesh apart, i.e. approxi- 
mately a velocity integral scale, and [pel was high. Possibly, if the wires were placed 
further apart, a lower initial IPolez( would result, although, as shown above, its 
magnitude would still increase and asymptote to unity. Further experiments, both 
wind-tunnel as well as numerical, could shed further light on this aspect. 

I n  summary, if two scalars are fed into the flow a t  precisely the same scale, and a t  
the same distance from the grid (thus a t  a position where the velocity length scale is 
the same for both scalars) the cross-correlation between the scalars will either remain 
constant, or actually increase, with x / M  depending on whether the scalars are intro- 
duced close to the grid (figure 2 2 )  or further downstream (figure 24). Of course, for 
both cases the scalar covariance 0,0, is decreasing, i.e. the covariance is dissipated 
(( 15) and figures 21 and 23). The unexpected case in which the scalar cross-correlation 
function increases has only been determined using the inference method; i t  will be 
interesting to see (in future meaaurements) whether this result can be verified using 
two different scalars. 

- 

4. Conclusions 
Our results show that the evolution of scalar fields in grid turbulence is critically 

dependent on the way the scalars are fed into the flow. The evolution of the scalar 
depends on the initial wavenumber (or scale) of the scalar field relative to the initial 
wavenumber (or scale) of the velocity field. For the case of a single scalar there are 
only two relevant wavenumbers, those of the scalar and the velocity fields. For the 
case of two scalars there are three relevant wavenumbers, those of each scalar and the 
velocity, all of which may be varied independently. Thus the mixing of two scalars is 
more complex than the mixing of a single scalar. We have found no evidence, however, 
to  suggest that  the evolution of the scalar field depends on the initial magnitude of the 
scalar variance or on the initial magnitude or sign of the cross-correlation coefficient 
for the cases investigated, which were for passive scalars. Our results, which will be 
summarized below, have been obtained by two independent methods: for a single 
scalar both temperature and helium have been used, for two scalars a direct method 
using c and 13 has been compared with an inference method using 0 only. The results 
using the different methods (and scalars) are in good agreement with each other. 

The results may be summarized as follows. 
(i) As was previously determined (Warhaft & Lumley 1978a) for temperature 

variance, the decay of helium variance depends on the relative scale of the helium 
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fluctuations to the velocity fluctuations; as the scale of the helium fluctuations is 
reduced relative to that of the velocity, the decay rate of 3 will be increased (figures 
12-14). It should be noted that for ro = rc = 1 the scalar length scale, be it for tem- 
perature or helium, is greater than the velocity length scale (figure 14). Furthermore, 
for rs = r,, the helium length scale is greater than the thermal length scale (figure 14). 
This is thought to be due to the difference in diffusivities of the two scalars. 

(ii) The decay of the scalar-flux cross-correlation coefficient, Pue and puc, is very 
slow if the scalars are introduced close to the grid, where the scalar length scale is 
determined by the large-scale mixing of the velocity wakes behind the grid bars, but 
more rapid if the scalar flux is introduced further downstream. Here the scalar is 
introduced into approximately isotropic turbulence, and its scale is set independently 
of that of the velocity (figures 15 and 16). 

(iii) The decay of the two-scalar cross-correlation coefficient (pBc or P ~ , ~ , )  is also 
slow if both scalars are introduced close to the grid, where the scalar length scales are 
completely determined by the velocity field (figures 17 and 22). If the two scalars are 
introduced a t  different longitudinal positions from the grid the decay of the scalar 
cross-correIation coefficient is much more rapid (figures 17 and 20, and Warhaft 1981). 
I n  this case the mismatch between the two scalar scales as well as the difference in 
velocity scale a t  the positions where the two scalars are introduced appears to facilitate 
the more rapid cross-correlation decay rate. Finally, we have presented a case in which 
the scalar cross-correlation coefficient increases with distance from the grid (figure 24). 
For this case both scalars were fed into the flow a t  exactly the same scale (which was 
smaller than that of the velocity scale) and a t  the same distance downstream from the 
grid. Of course, for this case (which was determined using the inference method) the 
scalar covariance decayed (as it did for all the other cases), i.e. the system was still 
dissipative, although the increase in pB,8z suggests that the scalar fields were becoming 
more ordered. 

Thus the scalar cross-correlation coefficient may decrease, remain constant, or 
increase with downstream distance, depending on how the two scalars are fed into the 
flow. This is a remarkable variation for a decaying flow without any production 
mechanisms and shows how strong the initial conditions are ill determining the 
evolution of the flow in grid turbulence. 
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